УДК 573.6:58.08.523

КОЛЛЕКЦИЯ РЕДКИХ РАСТЕНИЙ *IN VITRO*: ФОРМИРОВАНИЕ И ИЗУЧЕНИЕ

Елена Викторовна Малаева ^{1, 2}, Анастасия Ивановна Фетисова ¹

¹ГБУ ВО «Волгоградский региональный ботанический сад», 400007, Россия, Волгоград, пос. Металлургов, 68 ²ФГБОУ ВО «Волгоградский государственный социально-педагогический университет»,

400005, Россия, Волгоград, пр-т Ленина, 27 E-mail: e.malaeva@mail.ru, nastyusha.rusina@mail.ru

В статье представлена информация по совершенствованию технологии клонального микроразмножения редких и ценных видов растений. Коллекция редких растений, занесенных в Красную книгу РФ и Красную книгу Волгоградской области – 50 видов, относящихся к 19 семействам и разным эколого-фитоценотическим группам. Подобран оптимальный режим стерилизации для большинства редких видов растений - 5%-й Лизоформин® 3000, с экспозицией 5 и 7 минут. При использовании данного режима процент жизнеспособных семян *Tulipa* L. и *Fritillaria* L. был максимальным и составил 90% и 70% соответственно. На этапе микроразмножения для большинства редких видов растений наиболее эффективной является модифицированная питательная среда Мурасиге-Скуга, содержащая 6-БАП в концентрации 0,1-0,5 мг/л в сочетании с ИУК 0,01-0,1 мг/л. У 90-100% растений отмечено отсутствие морфологических аномалий и образование 4-12 адвентивных микропобегов на эксплант.

Ключевые слова: клональное микроразмножение; коэффициент размножения; пролиферация; регуляторы роста; редкие растения

Введение

Интерес к использованию методов культуры изолированных тканей для сохранения генофонда растений возрастает во всем мире. Следует отметить, что биотехнологические исследования для решения проблем сохранения биоразнообразия имеют свои критерии и принципы отбора объектов, что подчеркивают в своих работах ряд авторов [9, 10, 12].

При подборе объектов исследования для создания коллекции *in vitro* редких видов растений следует руководствоваться следующими критериями:

- 1. принадлежность видов к одной из категорий редкости (на этапе отработки технологий размножения в качестве растительного материала мы использовали виды со статусом 2 и 3);
 - 2. введение в культуру видов с категорией статуса редкости 1 и 2;
 - 3. практическая ценность видов (декоративные, лекарственные и др.);
 - 4. виды, трудно-размножаемые традиционными способами.

Работа по формированию и изучению коллекции *in vitro* в ГБУ ВО «Волгоградский региональный ботанический сад» (далее ВРБС) ведется с 2005 г. В настоящее время она насчитывает более 380 таксонов, в том числе редких видов, занесенных в Красную книгу РФ и Красную книгу Волгоградской области – 50 видов, относящихся к 19 семействам и разным эколого-фитоценотическим группам. Максимально представлены в коллекции семейства: *Fabaceae* Lindl. – 18%, *Iridaceae* Juss. – 14%, *Asteraceae* Dumort. – 10%, *Brassicaceae* Burnett – 8%, *Caryophyllaceae* Juss. – 8%, *Dioscoreaceae* R.Br. – 4%. Остальные семейства в коллекции составляют менее 2% и насчитывают только по одному представителю из семейства. Данная коллекция в культуре *in vitro* является самой динамичной. Это связано со сложностью введения

редких видов в культуру и с неустойчивостью многих из них, поэтому состав коллекции постоянно меняется.

Цель исследования — оптимизация основных этапов микроразмножения редких видов растений для получения максимального количества клонов.

Объекты и методы исследования

Изучение особенностей культивирования редких видов *in vitro* проводили на базе лаборатории биотехнологии ВРБС в 2021-2023 гг. Методика исследований базировалась на общепринятых биотехнологических методах [1, 4] и приемах, усовершенствованных в условиях лаборатории биотехнологии ВРБС [12].

Все манипуляции с культурами тканей проводили в стерильных условиях горизонтального ламинарного бокса S2010 (Holten LaminAir, Франция).

Материал для введения в культуру, собирали в экспедиционных выездах в местах естественного произрастания видов, а также на интродукционном участке природной флоры ВРБС. В качестве эксплантов использовали семена, изолированные зародыши, апикальные, латеральные меристемы, сегменты стерильных проростков, полученных из семян и сегменты луковиц (табл. 1).

Таблица 1 Типы культивируемых эксплантов редких видов растений

Объекты исследования	Типы эксплантов				
Lepidium meyeri Claus, Matthiola fragrans Bunge, Silene	Семена				
cretacea Fisch. ex Spreng., Silene hellmanii Claus,					
Anthemis trotzkiana Claus, Jurinea cretacea Bunge,					
Senecio paucifolius S.G. Gmel, Senecio schwetzowii					
Korsh., Centaurea taliewii Kleop., Centaurea gerberi					
Stev., Crambe tataria Sebeok, Hedysarum alpinum L.,					
Calophaca wolgarica (L. fil.) DC., Eriosynaphe longifolia					
(Fisch. ex Spreng.) DC., Saussurea salsa (Pall. ex Bieb.)					
Spreng., Hyssopus cretaceus Dubjan., Stipa cretacea P.					
Smirn., Zingeria biebersteiniana (Claus) P. Smirn.,					
Pulsatilla pratensis (L.) Mill., Pulsatilla patens (L.) Mill					
Hedysarum cretaceum Fisch., Genista tanaitica P. Smirn.,	Апикальные меристемы, семена				
Hedysarum grandiflorum Pall., Hedysarum					
razoumovianum Fisch. et Helm ex DC., Astragalus					
dasyanthus Pall. Genista sibirica L., Genista tanaitica P.					
Smirn.					
Bulbocodium versicolor (Ker-Gawl.) Spreng., Bellevalia	Семена, сегменты луковиц, почки				
speciosa Woronow ex Grossh., Tulipa gesneriana L. (T.	возобновления с кусочком донца луковицы				
schrenkii Regel), Allium regelianum A.Beck., Allium					
gunibicum Miscz. ex Grossh., Eremurus spectabilis Bieb.,					
Fritillaria ruthenica Wikstr.					
Artemisia salsoloides, Artemisia hololeuca Bieb. ex Bess.,	Апикальные и латеральные меристемы,				
Vincetoxicum intermedium Taliev, Clematis integrifolia L.,	пазушные почки				
Clematis orientalis L.	пазушные почки				
Iris tenuifolia Pall., Iris scariosa Willd. ex Link, Iris	Семена, изолированные зародыши				
pumila L., Iris aphylla L., Gladiolus tenuis Bieb.					
Sedum subulatum (C. A. Mey.) Boiss., Sempervivum	Розетки, сегменты чешуй, листьев, части				
ruthenicum Schnittsp. et C. B. Lehm.	околоцветника				

Примечание: КК ВО – Красная книга Волгоградской области – перечень по состоянию на 2017 г. [5].

В качестве стерилизующих агентов использовали раствор «Лизоформина[®] 3000» (Lysoformin[®] 3000) (5% – 5 мин; 5%-й – 7 мин; 7% – 3 мин; 7% – 5 мин) и

коммерческий гипохлорит натрия «Белизна» (10% - 10 мин; 5% - 20 мин). При анализе эффективности приемов стерилизации учитывали количество стерильных и нежизнеспособных эксплантов.

На этапе микроразмножения использовали модифицированные питательные среды Мурасиге-Скуга (МС) [20], Кнудсона (Кн) [19], Гамборга (В5) [18] с добавлением 6-бензиламинопурина (6-БАП) - 0,1-15 мг/л, кинетина (Кин) - 0,5-5,0 мг/л, зеатина (Зеа) - 0,1-1,0 мг/л, индолилуксусной кислоты (ИУК), индолил-3-масляной кислоты (ИМК) и 1-нафталинуксусной кислоты (НУК) в концентрации от 0,01-7,0 мг/л.

В экспериментах использовали следующие модификации питательных сред:

- 1 MC 6-БАП 0.5 мг/л;
- 2 MC 6-БАП 5,0 мг/л;
- 3 MC 6-БАП 0,1 мг/л +ИУК 0,01 мг/л;
- 4 MC 6-БАП 0,5 мг/л + ИУК 0,01 мг/л;
- 5 MC 6-БАП 1,0 мг/л + ИУК 0,1 мг/л;
- 6 MC 6-БАП 0.1 мг/л + НУК 0.01 мг/л;
- 7 MC 6-БАП 1,0 мг/л + НУК 0,1 мг/л.

Для культивирования растений класса Однодольные использовали следующие варианты сред:

- 1 МС без добавления регуляторов роста;
- 2 В5 без регуляторов роста;
- 3 Кн без регуляторов роста (агар 10%);
- 4 MC 6-БАП 0,1 мг/л + 0,1 мг/л ИУК;
- 5 МС 6-БАП 0,5 мг/л;
- 6 MC 6-БАП 0,1 мг/л + ИУК 0,01 мг/л;

В процессе исследований измеряли и рассчитывали: коэффициент размножения (Кр); количество отмерших листьев, шт; длину наиболее развитого листа, мм; линейный рост микропобега, см; количество аномальных (витрифицированных) растений, %; длину корней, мм. Период субкультивирования эксплантов в среднем составлял 30 суток, для однодольных растений до 70 дней.

Все опыты проводились в трехкратной повторности по 20 эксплантов в каждом варианте. При оценке оптимального режима стерилизации учитывали количество инфицированных и проросших семян, выраженных в процентах. Результаты экспериментальных данных обрабатывались статистически с помощью пакета прикладных программ Microsoft Office 2007 (Excel) при р < 0,05.

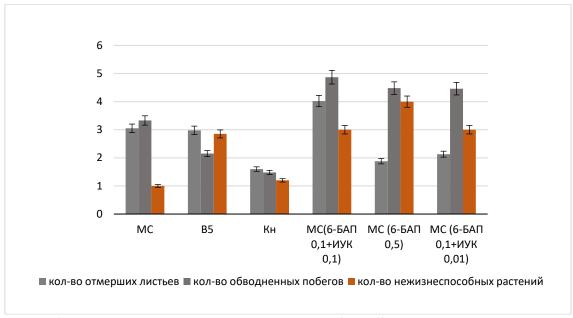
Результаты и обсуждение

В качестве первичных эксплантов для видов семейства Fabaceae (Genista tanaitica и Calophaca wolgarica) использовали сегменты стерильных проростков, выращенные из семян и апикальные меристемы для рода Hedysarum L. (Hedysarum grandiflorum, H. cretaceum, H. razoumovianum). Iris pumila вводили в культуру in vitro методом эмбриокультуры, виды рода Tulipa L. и Fritillaria L. – преимущественно семенами.

На этапе введения в культуру *in vitro* определяющим фактором является подбор оптимального режима стерилизации [6, 13, 16]. В своих исследованиях мы использовали коммерческий гипохлорит натрия «Белизна» и раствор «Лизоформин[®] 3000» в различной концентрации и времени экспозиции. Оптимальным режимом для большинства редких видов растения является 5%-й «Лизоформин[®] 3000» с экспозицией 5 и 7 минут. Для растений класса Однодольные оптимальным стерилизатором является 7%- й «Лизоформин[®] 3000», с экспозицией 3 минуты. При использовании данного

режима процент жизнеспособных семян *Tulipa* L. и *Fritillaria* L. был максимальным и составил 90% и 70% соответственно (табл. 2).

Таблица 2 Средние показатели выхода жизнеспособных эксплантов *Tulipa* L. и *Fritillaria* L. в зависимости от режима стерилизации


№	Вид	Выход жизнеспособных эксплантов (семян), %							
п/		10 % «Белизна» (10 мин)	5% «Белизна» (20 мин)	5% «Лизоформ ин [®] 3000», (5 мин)	5% «Лизоформ ин [®] 3000» (7 мин)	7% «Лизоформ ин [®] 3000» (3 мин)	7% «Лизоформ ин [®] 3000» (5 мин)		
1.	Tulipa gesneriana L. (T. schrenkii Regel.)	35	40	70	60	90	40		
2.	Tulipa biebersteini ana Schult. & Schult.	40	60	50	55	80	55		
3.	Tulipa suaveolens Roth.	35	35	50	65	75	70		
4.	Fritillaria ruthenica Wikstr.	40	40	50	60	70	60		
5.	Fritillaria meleagris L.	30	40	50	50	55	70		

Размножение редких видов растений *in vitro* с использованием в качестве эксплантов семян, обладающих различными типами покоя, без предварительной их обработки, практически невозможно. Работы ряда авторов посвящены разработке приемов преодоления покоя семян у однодольных растений. Так, О.И. Молканова с соавторами (2020) для преодоления покоя семян видов рода *Fritillaria* использует 2-этапную стратификацию: 5-7 недель при t $20-22^{\circ}$ C, 2-9-12 недель при t $3-5^{\circ}$ C при дальнейшем культивировании на без гормональной питательной среде или питательных средах с добавлением 1 мг/л 6-БАП и 1 мг/л ГК [10].

В настоящее время во многих исследованиях используют эмбриокультуру для сокращения сроков стратификации семян и выявления общих закономерностей и специфических особенностей культивирования *in vitro* видов рода *Iris* L., *Gladiolus* L. *Paeonia* L., и *Fritillaria* L. [2, 8, 14, 15, 17]. Следует отметить, что для дальнейшего развития эксплантов достаточно сложно подобрать оптимальную питательную среду, которая обеспечит их динамичный рост.

В своих исследованиях мы использовали различные прописи питательных сред и сочетания регуляторов роста с целью подбора питательных сред для длительного культивирования растений *in vitro* с сохранением нормальных морфофизиологических характеристик. На предварительном этапе при помощи эмбриокультуры были получены проростки *I. pumila*, которые затем пересаживали на экспериментальные среды.

На питательных средах, не содержащих фитогормонов, отмечался равномерный рост растений. На среде МС через месяц культивирования наблюдали большое количество витрифицированных (обводненных) побегов и отмерших листьев (рис. 1).

Рис. 1 Нарушение роста и развития у проростков *Iris pumila* **L. на экспериментальных** питательных средах

На питательной среде Кн наблюдался замедленный, но равномерный рост, при этом через 1 месяц культивирования растения были без морфологических отклонений и с незначительным количеством отмерших листьев (рис. 1).

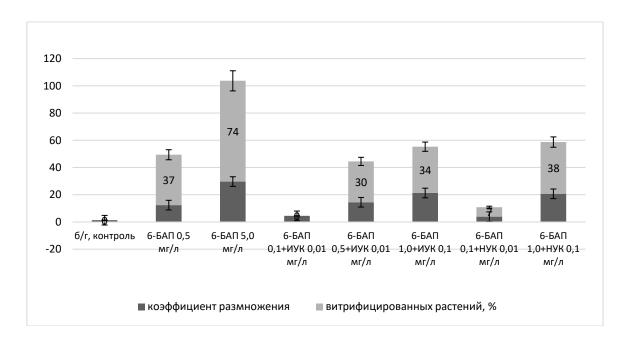
Таблица 3 Динамика развития растений-регенерантов *Iris pumila* L. на экспериментальных питательных средах

В	Питательная среда								
Длительность льтивировани (дней)	МС б/г (контроль)		МС 6-БАП 1,5 мг/л		МС 6-БАП 10 мг/л + ИУК 2 мг/л		МС 6-БАП 15 мг/л + ИУК 7,0 мг/л		
Длительность культивирования (дней)	I	II	I	II	I	II	I	II	
10	20,5± 1,2	27,6± 1,0	$32,4\pm0,9$	0	25,1±1,1	0	32,2±1,6	12,7± 1,1	
25	$41,2\pm 2,1$	$28,5 \pm 0,7$	$47,7 \pm 0,8$	$26,3\pm 1,1$	$39,2\pm 2,1$	0	48,4± 1,1	14,9± 1,7	
40	$58,3 \pm 0,2$	53,2± 1,0	52,9±1,2	$26,8 \pm 0,3$	56,4±1,4	0	$61,1\pm 1,4$	$16,2\pm 2,2$	
55	$70,4\pm 1,1$	$62,4\pm 1,6$	$68,5 \pm 0,6$	$27,2\pm0,8$	64,3±0,7	0	$74,3 \pm 1,7$	$17,8\pm 1,0$	
	$89,5 \pm 0,8$	$68,5 \pm 0,5$	$77,1\pm 1,0$	$27,2\pm0,8$	75,3±2,4	0	$85,5\pm 2,2$	$19,3\pm 1,3$	
70	Коэффициент размножения (на 70 день культивирования)								
	1,0±0,01		2,5±0,6		6,4±1,3		15,6±1,9		

Примечание: I – длина наиболее развитого листа (мм) II – длина корней (мм)

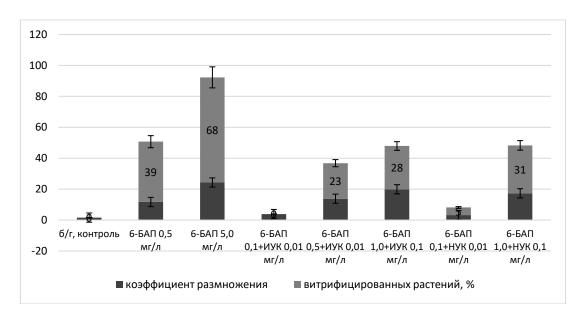
Таким образом, питательная среда Кн, не содержащая фитогормонов является оптимальной для длительного культивирования *I. pumila in vitro*.

Согласно данным, полученным Л.И. Тихомировой (2009), Е.Н. Ветчинкиной (2010), А.Ю. Набиевой, Т.В. Елисафенко (2012) высокие коэффициенты размножения для видов рода *Iris* L. получены на питательных средах с высоким содержанием цитокининов 6-БАП 1,5-15 мг/л в сочетании с ауксинами ИУК 2,0-7,0 мг/л [2, 11, 15].


С целью изучения особенностей морфогенеза проростков *I. pumila* на питательных средах с высоким содержанием цитокининов и ауксинов изучали их динамику развития с 10 по 70 день культивирования (табл. 3)

Следует отметить, что на экспериментальных питательных средах зафиксирована высокая регенерационная активность в сравнении с контрольной средой, но и процент аномальных побегов был выше 50%. Так, на питательной среде МС, содержащей 6-БАП 15 мг/л и ИУК 7,0 мг/л и МС 6-БАП 10 мг/л и ИУК 2,0 мг/л коэффициент размножения на 70 день культивирования составил $15,6\pm1,9$ и $6,4\pm1,3$ соответственно (табл. 3). На контрольной питательной среде МС без гормонов все растения-регенеранты *I. pumila* формировали только один побег.

Согласно полученным данным, максимальная длина наиболее развитого листа I. pumila отмечена на контрольной питательной среде MC без регуляторов роста - $89,5\pm0,8\,$ мм. На экспериментальных средах данный показатель достигал значения $85,5\pm2,2$. Максимальная длина корней через 70 дней культивирования на питательной среде MC 6-БАП 1,5 мг/л составила $27,2\pm0,8\,$ мм, что в $2,5\,$ раза меньше показателей полученных на контрольной безгормональной питательной среде - $68,5\pm0,5$ мм.


Невысокие показатели длины корней на экспериментальных питательных средах сочетались с хорошим развитием корневой системы. Растения-регенеранты *I. pumila* формировали корни II и III порядка, что не зафиксировано на контрольной питательной среде.

Таким образом, высокие содержания цитокининов обеспечивают высокую регенерационную активность, но в тоже время значительно стимулируют образование аномальных побегов, что является негативным фактором в работе с редкими видами растений. Многие авторы в своих исследованиях отмечают, что одним из основным показателем эффективности размножения редких видов *in vitro* является поддержание генетической стабильности размножаемых образцов [7, 9, 10, 12].

Puc. 2 Соотношение коэффициента размножения и витрифицированных растений Tulipa gesneriana L. на экспериментальных питательных средах

С целью оптимизации гормонального состава питательных сред на этапе микроразмножения, мы провели анализ их эффективности по сочетанию коэффициента размножения и витрифицированных растений для *Tulipa gesneriana* и *Fritillaria ruthenica* (рис. 2, 3).

Puc. 3 Соотношение коэффициента размножения и витрифицированных растений Fritillaria ruthenica Wikstr. на экспериментальных питательных средах

Максимальные показатели коэффициента размножения для T. gesneriana и F. ruthenica отмечены на питательной среде MC, содержащей 6-БАП в концентрации 5,0 мг/л - 29,7 \pm 0,7 и 24,3 \pm 0,9 и 6-БАП 1,0 мг/л и ИУК 0,1 мг/л - 21,3 \pm 1,1 и 19,9 \pm 0,7, которые сочетались высоким показателем витрифицированных растений - 74% и 68% и 34% и 28% соответственно. Оптимальным содержанием фитогормонов на этапе микроразмножения для T. gesneriana и F. ruthenica является 6-БАП 0,1 мг/л и ИУК 0,01 мг/л. Коэффициент размножения для T. gesneriana на данной питательной среде составил 4,5 \pm 0,5, а F. ruthenica - 3,9 \pm 1,1 в сочетании с нулевым показателем витрифицированных растений (рис. 4).

Подбор оптимальной концентрации и типа цитокинина на этапе микроразмножения для C. wolgarica и G. tanaitica выявил эффективность всех изученных цитокининов. Максимальные показатели коэффициента размножения $7,5\pm1,1$ и $5,3\pm0,5$ для C. wolgarica и G. tanaitica зафиксированы на питательной среде, содержащей 6-БАП в концентрации 5,0 мг/л. При этом при данной концентрации отмечено максимальное количество аномальных побегов — более 60% (табл. 4).

Следует отметить, что использование цитокининов в концентрации выше 1,0 мг/л приводило к образованию аномальных растений. Так, при использовании 6-БАП в концентрации 1,0 мг/л процент витрифицированных растений для C. wolgarica составил 41%, 2,0 мг/л — 62% и 5,0мг/л достигал 65%. Для G. tanaitica получены сходные результаты и процент витрифицированных растений при тех же концентрациях составил: 38, 56 и 70% соответственно.

На питательной среде, содержащей Кин в концентрации 1,0 мг/л, наблюдали лучшие показатели линейного роста в сравнении с другими цитокининами. Так, для G. tanaitica и C. wolgarica показатели линейного роста на данной среде составили $5,9\pm0,7$

см и 3.9 ± 1.2 см, тогда как на питательной среде, содержащей 6-БАП данный показатель достигал 3.8 ± 0.6 и 3.1 ± 0.3 см.

 \mathbf{A}

Б

Рис. 4 Образование дочерних микролуковиц Fritillaria ruthenica Wikstr. на питательной среде МС с добавлением 6-БАП 0,1 мг/л и ИУК 0,01 мг/л на 40 день культивирования (A – образование микролуковиц, E, E – деление микролуковиц)

Таблица 4 Влияние различных цитокининов на коэффициент размножения *Calophaca wolgarica* (L. fil.) и *Genista tanaitica* P. Smirn.

Цитокинин	Концен трация,	Линейный рост, см		Коэффициент размножения		Витрифицированны х побегов, %	
	мг/л	Genista tanaitica P. Smirn.	Calophaca wolgarica (L. fil.)	Genista tanaitica P. Smirn.	Calophaca wolgarica (L. fil.)	Genista tanaitica P. Smirn.	Calophaca wolgarica (L. fil.)
МС без гормонов, контроль		1,8±0,5	1,5±0,2	1,1±0,3	1,0±0,1	0	0
•	0,5	2,8±0,4	2,3±0,5	1,9±0,2	1,6±0,2	10	5
Кин	1,0	5,9±0,7	3,9±1,2	2,4±0,8	$2,6\pm0,2$	15	10
	5,0	5,2±1,1	3,2±1,6	2,6±0,2	1,8±0,3	46	42
	0,1	$0,2\pm0,3$	$0,5\pm0,1$	1,1±0,3	1,0±0,2	0	0
3ea	0,5	$0,5\pm0,7$	$0,9\pm0,4$	1,4±0,4	$1,4\pm0,2$	10	12
	1,0	$0,5\pm0,4$	$0,6\pm0,2$	1,0±0,01	$1,0\pm0,01$	20	24
	0,1	3,8±0,6	$2,8\pm0,8$	4,3±0,7	$3,8\pm0,5$	0	0
	0,5	3,7±0,2	3,1±0,3	5,4±1,0	3±0,9	20	18
6-БАП	1,0	2,9±0,8	2,1±0,4	5,5±0,9	2,4±0,5	38	41
	2,0	2,3±0,1	1,8±0,4	6,4±0,7	4,5±1,0	56	62
	5,0	2,4±0,3	1,1±0,7	7,5±1,1	5,3±0,5	70	65

Важным показателем при культивировании редких видов растений является сохранение высоких показателей коэффициента размножения в зависимости от количества субкультивирований. На примере редких видов семейства *Fabaceae* установлена зависимость коэффициента размножения от количества субкультивирований. Так, для *G. tanaitica* и *C. wolgarica* наиболее высокий коэффициент размножения наблюдался на этапе введения в культуру и на первых этапах субкультивирования (3-4 пассаж) — $8,2\pm1,9$ и $6,5\pm1,7$, а для *H. grandiflorum*, *H. cretaceum*, *H. razoumovianum* максимальный коэффициент размножения приходился на 5-6 пассаж — $5,9\pm1,2,4,6\pm0,9$ и $6,1\pm1,4$ соответственно (рис. 5).

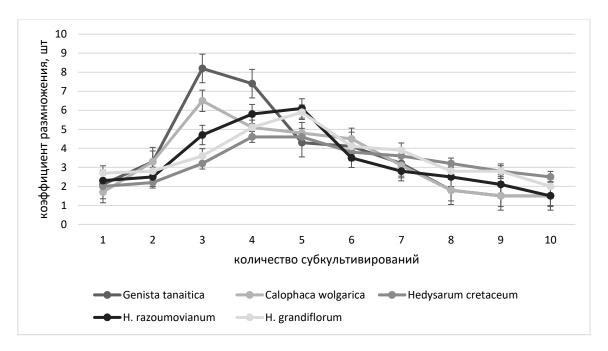


Рис. 5 Коэффициент размножения видов семейства *Fabaceae* в зависимости от количества субкультивирований (питательная среда 6-БАП 0,1 мг/л и ИУК 0,01 мг/л, 35 день культивирования)

Анализ полученных данных по влиянию различных концентраций цитокининов на этапе микроразмножения позволил выделить 3 группы питательных сред:

I группа сред — концентрация 6-БАП — 0,1-0,5 мг/л; коэффициент размножения от 4 до 20 и количество витрифицированных побегов не более 20%.

II группа — концентрация 6-БАП в этих вариантах составляла 0,5-1,0 мг/л; коэффициент размножения от 20 до 30 и количество витрифицированных побегов не более 40%.

III группа — отнесены среды с концентрацией 6-БАП от 2,0 до 15 мг/л независимо от соотношения с ауксином; коэффициент размножения от 2,8 до 35 и количество витрифицированных побегов более 50%.

Выводы

Оптимальной питательной средой на этапе микроразмножения по соотношению коэффициента размножения и витрифицированных растений для T. gesneriana и F. ruthenica является MC, дополненная 6-БАП 0,1 мг/л и ИУК 0,01 мг/л. Коэффициент размножения для T. gesneriana на данной питательной среде составил 4,5±0,5, а F. $ruthenica-3,9\pm1,1$ в сочетании с нулевым показателем витрифицированных растений;

для G. tanaitica и C. wolgarica — MC, дополненная 6-БАП 0,1 мг/л, коэффициент размножения составил 4,3±0,7 и 3,8±0,5 соответственно. На питательной среде, содержащей Кин в концентрации 1,0 мг/л, зафиксированы максимальные показатели линейного роста для G. tanaitica и C. wolgarica - 5,9±0,7 см и 3,9±1,2 см.

Оптимальными, для большинства редких видов растений, являются питательные среды, содержащие 6-БАП в концентрации 0,1-0,5 мг/л в сочетании с ИУК в концентрации 0,01-0,1 мг/л; у 90-100% растений отмечено отсутствие аномальных побегов и образование 4-12 адвентивных побегов на одно растение.

Таким образом, методы биотехнологии и коллекции редких видов *in vitro*, являются дополнительным инструментом в решении проблемы сохранения биологического разнообразия *ex situ*. Они обеспечивают поддержание уникальных генотипов даже в том случае, если они представлены единичными экземплярами.

Список литературы

- 1. *Бутенко Р.Г.* Биология клеток высших растений *in vitro* и биотехнология на их основе. М.: ФБК-ПРЕСС, 1999. 160 с.
- 2. Ветчинкина E.M. Биологические особенности культивирования *in vitro* семян и зародышей редких видов растений: автореф. дис. ... канд. биол. наук. M., M.,
- 3.~3друйковская-Pихтер A.И. Культура изолированных зародышей и некоторые другие приемы выращивания растений *in vitro.* M.: Колос, 1974. 60 с.
- 4. *Калинин Ф.Л., Кушнир Г.П., Сарнацкая В.В.* Технология микроклонального размножения растений. Киев: Наукова думка, 1992. 488 с.
- 5. Красная книга Волгоградской области Т.2. Растения и другие организмы / под ред. д.б.н., проф. О.Г. Барановой, д.б.н., проф. В.А. Сагалаева. Воронеж: ООО «Издат-Принт», 2017. 268 с.
- 6. *Крахмалева И.Л., Молканова О.И., Малаева Е.В.* Использование клонального микроразмножения для разных форм перспективных сортов *Actinidia kolomikta* (Rupr. et Maxim) Maxim // Бюллетень Государственного Никитского ботанического сада. 2019. Вып. 133. С. 80-86. DOI: 10.36305/05131634-2019-133-80-86
- 7. *Малаева Е.В.* Сохранение редких видов растений в коллекции *in vitro* Волгоградского регионального ботанического сада // Проблемы ботаники Южной Сибири и Монголии: Материалы XVIII Междунар. науч.-практ. конф. Барнаул, 2019. С. 606-610. DOI: 10.14258/pbssm.2019127
- 8. *Малаева Е.В.* Особенности культивирования *in vitro* редких видов семейства *Iridaceae* Juss. // Проблемы ботаники Южной Сибири и Монголии, 2022. № 21(2). С. 120-123. DOI: 10.14258/pbssm.2022066
- 9. Молканова О.И., Коновалова Л.Н., Стахеева Т.С. Особенности размножения и сохранения коллекции ценных и редких видов растений в условиях *in vitro* // Бюллетень Государственного Никитского ботанического сада. -2016. Вып. 120. С. 17-23.
- 10. Молканова О.И., Горбунов Ю.Н., Ширнина И.В., Егорова Д.А. Применение биотехнологических методов для сохранения генофонда редких видов растений // Ботанический журнал 2020. Т. 105. №6. С. 610-619. DOI: 10.31857/S0006813620030072
- 11. Набиева А.Ю., Елисафенко Т.В. Особенности размножения редких сибирских видов рода Iris L. I. glaucescens Bunge. и I. bloudowii Ledeb. в условиях культуры // Turczaninowia. 2012. Вып. 15(1). С. 80-84.
- 12. Самарская В.О., Малаева Е.В., Постнова М.В. Аспекты клонального микроразмножения и сохранения растений *in vitro* // Природные системы и ресурсы 2019. T. 9. № 3. C.13-22. DOI: 10.15688/nsr.jvolsu.2019.3.2

- 13. Семенова Д.А., Молканова О.И., Ахметова Л.Р., Митрофанова И.В. Влияние состава питательной среды на регенерацию *in vitro* некоторых сортов *Clematis* L., Вестник КрасГАУ. -2023. -№ 4. C. 66-73. DOI: 10.36718/1819-4036-2023-4-66-73
- 14. *Тихомирова Л.И*. Особенности индукции морфогенеза из различных фрагментов цветка ириса в культуре *in vitro* // Turczaninowia. -2010. -№ 3 (3). C. 147-151.
- 15. *Тихомирова Л.И*. Особенности морфогенеза *Iris sibirica* L. в культуре *in vitro* // Проблемы ботаники Южной Сибири и Монголии. Материалы восьмой международной научно–практической конференции Барнаул, 2009. С. 364-369.
- 16. Gamborg, O.L., Eveleigh D.E. Culture methods and detection of glucanases in cultures of wheat and barley // Can. J. Biochem. 1968. Vol. 46. –№ 5. P. 417-421.
- 17. *Knudson L*. A new nutrient solution for the germination of orchid seeds // Amer. Org. Soc. Bul, 1946. Vol. 15. P. 214-217.
- 18. *Malaeva E.V., Molkanova O.I.* Regeneration peculiarities of *in vitro* berry cultures // Acta Horticulturae. 2021. Vol. 1324. P. 89-94. DOI: 10.17660/ActaHortic.2021.1324.13
- 19. Murashige T., Skoog F. A revised medium for rapid growth and bioassays with tobacco tissue cultures // Phsiol. Plant. $-1962. \text{Vol.} 15. \text{N}_{2}3. \text{P.} 473-497.$
- 20. *Tikhomirova L.I., Malaeva E.V.* Research and development of process conditions for growing young plants *Iris sibirica* L. Aimed at bio-synthesis of tannins, flavonoids and xanthones // IOP Conference Series: Materials Science and Engineering. 2020. Vol. 941. 012035. DOI:10.1088/1757-899X/941/1/012035

Статья поступила в редакцию 11.04.2025 г.

Malaeva E.V., Fetisova A.I. Collection of rare plants in vitro: formation and study // Bull. of the State Nikita Botan. Gard. -2025. - No. 155 - P.91-101

This article provides information about improving of the clonal micropropagation technology and *in vitro* reproduction peculiarities of rare and valuable plant species. The collection *in vitro* plant, includes 50 rare species listed in the Red Book of the Russian Federation and the Red Book of the Volgograd Region - belonging to 19 families and various ecological and phytocenotic groups. The optimal mode of rare species explants' sterilization has been selected - a 5% solution of Lysofornin® 3000 at an exposure of 7 minutes. When using this regime, the percentage of viable seeds of *Tulipa* L. and *Fritillaria* L. was maximum and amounted to 90% and 70%, respectively. For the majority of rare plant species, nutrientmedia containing 6-BAP at a concentration of 0.1-0.5 mg/l in combination with IAA at a concentration of 0.01-0.1 mg/l are optimal; in 90–100% of plants, the absence of abnormal shoots and the formation of 4–12 axillary ones per plant were noted.

Key words: clonal micropropagation; multiplication rate; proliferation; plant growth regulators; rare plant