Preview

Bulletin of the State Nikitsky Botanical Gardens

Advanced search

The structure of the microbiome of the southern chernozem of rhizosphere of winter wheat under the conditions of the use of associative strains of microorganisms

https://doi.org/10.36305/0513-1634-2021-141-120-129

Abstract

The results of the analysis of data on the taxonomic structure of the microbial community of the rhizosphere of three cultivars of winter wheat under the conditions of the use of microorganisms strains with high associative potential are presented. The aim of this work was to study the effect of the introduction of associative bacterial strains into the rhizosphere community of winter wheat on changes in the taxonomic structure of the microbiome.312 and 422 OTUs were determined at the genus level as a result of studies of the rhizosphere of winter wheat in the conditions of 2019 and 2020, respectively. The share of unclassified Chitinophagaceae was the highest among all representatives of the genera attributed to the family. The greatest positive effect of the use of associative strains on the representation of their share was observed on ‘Ermak’ cultivar under the conditions of 2019 by 14.9-22.1% in comparison with the variant without treatment (6.8%). Principal Coordinate Analysis made it possible to reveal significant differences between the majority of variants with inoculation by associative strains and control.

About the Authors

A. Yu. Egovtseva
ФГБУН «Научно-исследовательский институт сельского хозяйства Крыма»
Russian Federation


T. N. Melnichuk
ФГБУН «Научно-исследовательский институт сельского хозяйства Крыма»
Russian Federation


S. F. Abdurashitov
ФГБУН «Научно-исследовательский институт сельского хозяйства Крыма»
Russian Federation


L. A. Radchenko
ФГБУН «Научно-исследовательский институт сельского хозяйства Крыма»
Russian Federation


References

1. Андронов Е.Е., Пинаев А.Г., Першина Е.В. Выделение ДНК из образцов почвы. - Санкт-Петербург: ПК ”Объединение Вента”, 2011. - 27 с.

2. Доспехов Б.А. Методика полевого опыта с основами статистической обработки результатов исследований. - М.: Агропроиздат, 1985. - 351с.

3. Орлова О.В., Чирак Е.Л., Воробьев Н.И., Свиридова О.В., Лисина Т.О., Андронов Е.Е. Таксономический состав и организация микробного сообщества дерново-подзолистых почв после внесения соломы зерновых культур и использования препарата Баркон // Сельскохозяйственная биология. - 2019. - Т. 54. - № 1.

4. Шерстобоев Н.К., Мельничук Т.Н. Методологический подход к изучению ассоциативных микроорганизмов // Вестник Одесского национального университета. - 2005. - T. 10. - № 7. - C. 311-315.

5. Bates S.T., Berg-Lyons J.G., Caporaso W.A., Walters W.A., Knight R., Fierer N. Examining the global distribution of dominant archaeal populations in soil // ISME J. - 2011. - № 5. - Р. 908-917.

6. Callahan B.J., McMurdie P.J., Rosen M.J., Han A.W., Johnson A.J.A., Holmes S.P. “DADA2: High-resolution sample inference from Illumina amplicon data.” Nature Methods. - 2016. - Vol.13. - P. 581-583. doi: 10.1038/nmeth.3869.

7. Caporaso J.G, Kuczynski J., Stombaugh J. et al. QIIME allows analysis of highthroughput community sequencing data. Nature methods. - 2010. - Vol. 7(5). - P. 335-336. doi: HYPERLINK https://dx.doi.org/10.1038%2Fnmeth.f.303"t"pmc_ext" 10.1038/nmeth.f.303.

8. Chee-Sanford J., Tian D., Sanford R. Consumption of N2O and other N-cycle intermediates by Gemmatimonas aurantiaca strain T-27 // Microbiology. - 2019. - Vol. 165. - №. 12. - P. 1345-1354.

9. Hammer О., Harper D.A.T., Ryan P.D. PAST: Paleontological Statistics Software Package for Education and Data Analysis // Palaeontologia Electronica. - 2001. - Vol. 4(1). - 9 p.

10. Kouřilová X., Schwarzerová J., Pernicová I., Sedlář K., Mrázová K., Krzyžánek V., Obruča S. The First Insight into Polyhydroxyalkanoates Accumulation in Multi-Extremophilic Rubrobacter xylanophilus and Rubrobacter spartanus //Microorganisms. - 2021. - Vol. 9. - № 5. - P. 909.

11. McMurdie P.J., Holmes S. phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS One. -2013. - Vol. 22. - № 8(4). - P. e61217. doi: 10.1371/journal.pone.0061217. PMID: 23630581; PMCID: PMC3632530.

12. Pickett B., Irvine I.C., Bullock E., Arogyaswamy K., Aronson E. Legacy effects of invasive grass impact soil microbes and native shrub growth //Invasive Plant Science and Management. - 2019. - Vol. 12. - № 1. - P. 22-35.

13. Salas-González I., Reyt G., Flis P., Custódio V., Gopaulchan D., Bakhoum N., Dew T.P., Suresh K., Franke R.B., Dangl J.L., Salt D.E., Castrillo G. Coordination between microbiota and root endodermis supports plant mineral nutrient homeostasis // Science. - 2021. - Vol. 371. - № 6525. DOI: 10.1126/science.abd0695.

14. Wright E.S. “Using DECIPHER v2.0 to Analyze Big Biological Sequence Data in R.” The R Journal. - 2016. - Vol. 8. - № 1. - P. 352-359.

15. Viana A.T., Caetano T., Covas C., Santos T., Mendo S. Environmental superbugs: The case study of Pedobacter spp. //Environmental Pollution. - 2018. - Vol. 241. - P. 1048-1055.


Review

For citations:


Egovtseva A.Yu., Melnichuk T.N., Abdurashitov S.F., Radchenko L.A. The structure of the microbiome of the southern chernozem of rhizosphere of winter wheat under the conditions of the use of associative strains of microorganisms. Bulletin of the State Nikitsky Botanical Gardens. 2021;(141):120-129. (In Russ.) https://doi.org/10.36305/0513-1634-2021-141-120-129

Views: 230


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 0513-1634 (Print)