Efficiency of the innovative oligonucleotide insecticide СOССUS-11 in the control of Coccus hesperidum L.
Abstract
Insects significantly exceed all types of living organisms in terms of species diversity and total biomass, being one of the most prominent consumers of plants on the planet. To preserve crops, one of the main tasks in agriculture has always been the need to control and reduce the number of pest insects. The modern use of chemical insecticides leads to the accumulation of xenobiotics in nature and a reduction in biodiversity, including insects. Sustainable development of human society is impossible without beneficial insects, so pest control must be effective and selective. This article shows that the use of the contact oligonucleotide insecticide COCCUS-11 at a concentration of 100 ng/µl against the larvae of Coccus hesperidum L. resulted in the death of 95.59 ± 1.63 % within 12 days. Natural oligonucleotide insecticides demonstrate a new method of pest control that is effective and safe for the environment.
References
1. Alberts B., Johnson A., Lewis J., Raff M., Roberts K., Walter P. From DNA to RNA // Mol. Biol. Cell. – 2002. – Vol. 91. – P. 401.
2. Bar-On Y.M., Phillips R., Milo R. The biomass distribution on Earth // Proc. Natl. Acad. Sci. USA. – 2018. – Vol. 115. – P. 6506-6511. DOI: 10.1073/pnas.1711842115
3. Daly H., Doyen J.T., Purcell A.H. Introduction to Insect Biology and Diversity // Oxford University Press: New York, NY, USA. – 1998. – P. 1-9.
4. Dias N., Stein C.A. Antisense oligonucleotides: basic concepts and mechanisms // Mol Cancer Ther. – 2002. – Vol. 1. – P. 347-55.
5. Gal’chinsky N.V., Yatskova E.V., Novikov I.A., Sharmagiy A.K., Plugatar Y.V., Oberemok V.V. Mixed insect pest populations of Diaspididae species under control of oligonucleotide insecticides: 3′-end nucleotide matters // Pesticide Biochem Physiol. – 2024. – Vol. 200. – P. 105838. DOI: 10.1016/j.pestbp.2024.105838
6. García Morales M., Denno B.D., Miller D.R., Miller G.L., Ben-Dov Y., Hardy N.B. ScaleNet: A literature-based model of scale insect biology and systematics // Database J. Biol. Database Curation. – 2016. – Vol. 2016. – P. bav118. DOI: 10.1093/database/bav118
7. Hallmann C.A., Sorg M., Jongejans E., Siepel H., Hofland N., Schwan H., Stenmans W., Müller A., Sumser H., Hörren T., et al. More than 75 percent decline over 27 years in total flying insect biomass in protected areas // PLoS ONE. – 2017. – Vol. 12. – P. e0185809. DOI: 10.1371/journal.pone.0185809
8. Kapranas A., Morse J.G., Pacheco P., Forster L.D., Luck R.F. Survey of brown soft scale Coccus hesperidum L. parasitoids in southern California citrus // Biol. Control. – 2007. – Vol. 42. – P. 288-299. DOI: 10.1016/j.biocontrol.2007.05.012
9. Keyel P.A. DNases in health and disease // Dev Biol. – 2017. – Vol. 429. – P. 1-11. DOI: 10.1016/j.ydbio.2017.06.028
10. Milner A.M., Boyd I.L. Toward pesticidovigilance // Science. – Vol. 2017. – Vol. 6357. – P. 1232-1234. DOI: 10.1126/science.aan2683
11. Oberemok V., Gal’chinsky N., Novikov I., Sharmagiy A., Yatskova E., Laikova E., Plugatar Y. Ribosomal RNA-Specific Antisense DNA and Double-Stranded DNA Trigger rRNA Biogenesis and Insecticidal Effects on the Insect Pest Coccus hesperidum // Int. J. Mol. Sci. – 2025. – Vol. 26. – P. 7530. DOI: 10.3390/ijms26157530
12. Oberemok V.V., Laikova K.V., Gal’chinsky N.V. Contact unmodified antisense DNA (CUAD) biotechnology: list of pest species successfully targeted by oligonucleotide insecticides // Front. Agron. – 2024. – Vol. 6. – P. 1415314. DOI: 10.3389/fagro.2024.1415314
13. Oberemok V.V., Laikova K.V., Gal’chinsky N.V., Useinov R.Z., Novikov I.A., Temirova Z.Z., Shumskykh M.N., Krasnodubets A.M., Repetskaya A.I., Dyadichev V.V., et al. DNA insecticide developed from the Lymantria dispar 5.8S ribosomal RNA gene provides a novel biotechnology for plant protection // Sci. Rep. – 2019. – Vol. 9. – P. 6197. DOI: 10.1038/s41598-019-42688-8
14. Oberemok V.V., Laikova K.V., Repetskaya A.I., Kenyo I.M., Gorlov M.V., Kasich I.N., Krasnodubets A.M., Gal’chinsky N.V., Fomochkina I.I., Zaitsev A.S., et al. A Half-Century History of Applications of Antisense Oligonucleotides in Medicine, Agriculture and Forestry: We Should Continue the Journey // Molecules. – 2018. – Vol. 23. – P. 1302. DOI: 10.3390/molecules23061302
15. Oberemok V.V., Laikova K.V., Zaitsev A.S., Temirova Z.Z., Gal’chinsky N.V., Nyadar P.M., Shumskykh M.N., Zubarev I.V. The need for the application of modern chemical insecticides and environmental consequences of their use: A mini review // J. Plant Prot. Res. – 2017. – Vol. 57. – P. 427-432. DOI: https://doi.org/10.1515/jppr-2017-0044
16. Oberemok V.V., Novikov I.A., Yatskova E.V., Bilyk A.I., Sharmagiy A.K., Gal’chinsky N.V. Potent and selective ‘genetic zipper’ method for DNA-programmable plant protection: innovative oligonucleotide insecticides against Trioza alacris Flor // Chem Biol Technol Agric. – 2024. – Vol. 11(144). – P. 1-8. DOI: 10.1186/s40538-024-00668-9
17. Oberemok V.V., Puzanova Y.V., Gal'chinsky N.V. The 'genetic zipper' method offers a cost-effective solution for aphid control // Front Insect Sci. – 2024. – Vol. 4. – P. 1467221. DOI: 10.3389/finsc.2024.1467221.
18. Oerke E.-C., Dehne H.-W. Safeguarding production—Losses in major crops and the role of crop protection // Crop Prot. – 2004. – Vol. 23. – P. 275-285. DOI: 10.1016/j.cropro.2003.10.001
19. Pérez-Lucas G., Vela N., Aatik A.E., Navarro S. Environmental Risk of Groundwater Pollution by Pesticide Leaching through the Soil Profile // IntechOpen. – 2019. – Vol. 3. – P. 45-68. DOI: 10.5772/intechopen.82418
20. Pisa L., Goulson D., Yang E.-C., Gibbons D., Sánchez-Bayo F., Mitchell E., Aebi A., van der Sluijs J., Mac Quarrie C.J.K., Giorio C., et al. An update of the Worldwide Integrated Assessment (WIA) on systemic insecticides // Environ. Sci. Pollut. Res. – 2021. – Vol. 28. – P. 11749-11797. DOI: 10.1007/s11356-021-12853-6
21. Sanchis V. From microbial sprays to insect-resistant transgenic plants: History of the biospesticide Bacillus thuringiensis. A review // Agron. Sustain. Dev. – 2011. – Vol. 31. – P. 217-231. DOI: 10.1051/agro/2010027
22. Schernthaner J.P., Milne R.E., Kaplan H. Characterization of a novel insect digestive DNase with a highly alkaline pH optimum // Insect Biochem Mol Biol. – 2002. – Vol. 32. – P. 255-263. DOI: 10.1016/S0965-1748(01)00084-4
23. Sexton S.E., Lei Z., Zilberman D. The Economics of Pesticides and Pest Control // Int. Rev. Environ. Resour. Econ. – 2007. – Vol. 1. – P. 271-326. DOI: 10.1561/101.00000007
24. Terenius O., Papanicolaou A., Garbutt J.S., Eleftherianos I., Huvenne H., Kanginakudru S., Albrechtsen M., An C., Aymeric J.L., Barthel A., et al. RNA interference in Lepidoptera: An overview of successful and unsuccessful studies and implications for experimental design // J. Insect Physiol. – 2011. – Vol. 57. – P. 231-245. DOI: 10.1016/j.jinsphys.2010.11.006
25. Villanueva R.T., Gauthier N., Ahmed Z.M. First Record of Coccus hesperidum L. (Hemiptera: Coccidae) in Industrial Hemp in Kentucky // Fla. Entomol. – 2021. – Vol. 103. – P. 514-515. DOI: 10.1653/024.103.00415
26. Vranjic J.A. 1.3.1 Effects on host plant // World Crop Pests. – 1997. – Vol. 7. – P. 323-336.
27. Warner J.R. The economics of ribosome biosynthesis in yeast // Trends Biochem. Sci. – 1999. – Vol. 24. – P. 437-440.
28. Weston D.P., Poynton H.C., Wellborn G.A., Lydy M.J., Blalock B.J., Sepulveda M.S., Colbourne J.K. Multiple origins of pyrethroid insecticide resistance across the species complex of a non-target aquatic crustacean, Hyalella azteca // Proc. Natl. Acad. Sci. USA. – 2013. – Vol. 110. – P. 16532-16537. DOI: 10.1073/pnas.1302023110
29. Woodcock B.A., Bullock J.M., Shore R.F., Heard M.S., Pereira M.G., Redhead J., Ridding L., Dean H., Sleep D., Henrys P., et al. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees // Science. – 2017. – Vol. 356. – P. 1393-1395. DOI: 10.1126/science.aaa1190
Review
For citations:
Gal’chinsky N.V. Efficiency of the innovative oligonucleotide insecticide СOССUS-11 in the control of Coccus hesperidum L. Bulletin of the State Nikitsky Botanical Gardens. 2025;1(157):132-141. (In Russ.)
JATS XML





























